Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 399: 130556, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460564

RESUMO

Recycling carbon-rich wastes into high-value platform chemicals through biological processes provides a sustainable alternative to petrochemicals. Cupriavidus necator, known for converting carbon dioxide (CO2) into polyhydroxyalkanoates (PHA) was studied for the first time using biogas streams as the sole carbon source. The bacterium efficiently consumed biogenic CO2 from raw biogas with methane at high concentrations (50%) proving non-toxic. Continuous addition of H2 and O2 enabled growth trends comparable to glucose-based heterotrophic growth. Transcriptomic analysis revealed CO2-adaptated cultures exhibited upregulation of hydrogenases and Calvin cycle enzymes, as well as genes related to electron transport, nutrient uptake, and glyoxylate cycle. Non-adapted samples displayed activation of stress response mechanisms, suggesting potential lags in large-scale processes. These findings showcase the setting of growth parameters for a pioneering biological biogas upgrading strategy, emphasizing the importance of inoculum adaptation for autotrophic growth and providing potential targets for genetic engineering to push PHA yields in future applications.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Dióxido de Carbono , Cupriavidus necator/genética , Biocombustíveis , Rios , Poli-Hidroxialcanoatos/metabolismo , Processos Autotróficos
2.
Environ Microbiome ; 19(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167520

RESUMO

BACKGROUND: The anaerobic digestion process degrades organic matter into simpler compounds and occurs in strictly anaerobic and microaerophilic environments. The process is carried out by a diverse community of microorganisms where each species has a unique role and it has relevant biotechnological applications since it is used for biogas production. Some aspects of the microbiome, including its interaction with phages, remains still unclear: a better comprehension of the community composition and role of each species is crucial for a cured understanding of the carbon cycle in anaerobic systems and improving biogas production. RESULTS: The primary objective of this study was to expand our understanding on the anaerobic digestion microbiome by jointly analyzing its prokaryotic and viral components. By integrating 192 additional datasets into a previous metagenomic database, the binning process generated 11,831 metagenome-assembled genomes from 314 metagenome samples published between 2014 and 2022, belonging to 4,568 non-redundant species based on ANI calculation and quality verification. CRISPR analysis on these genomes identified 76 archaeal genomes with active phage interactions. Moreover, single-nucleotide variants further pointed to archaea as the most critical members of the community. Among the MAGs, two methanogenic archaea, Methanothrix sp. 43zhSC_152 and Methanoculleus sp. 52maCN_3230, had the highest number of SNVs, with the latter having almost double the density of most other MAGs. CONCLUSIONS: This study offers a more comprehensive understanding of microbial community structures that thrive at different temperatures. The findings revealed that the fraction of archaeal species characterized at the genome level and reported in public databases is higher than that of bacteria, although still quite limited. The identification of shared spacers between phages and microbes implies a history of phage-bacterial interactions, and specifically lysogenic infections. A significant number of SNVs were identified, primarily comprising synonymous and nonsynonymous variants. Together, the findings indicate that methanogenic archaea are subject to intense selective pressure and suggest that genomic variants play a critical role in the anaerobic digestion process. Overall, this study provides a more balanced and diverse representation of the anaerobic digestion microbiota in terms of geographic location, temperature range and feedstock utilization.

3.
Environ Sci Technol ; 58(1): 591-602, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38112274

RESUMO

The presence of elevated ammonia levels is widely recognized as a significant contributor to process inhibition in biogas production, posing a common challenge for biogas plant operators. The present study employed a combination of biochemical, genome-centric metagenomic and metatranscriptomic data to investigate the response of the biogas microbiome to two shock loads induced by single pulses of elevated ammonia concentrations (i.e., 1.5 g NH4+/LR and 5 g NH4+/LR). The analysis revealed a microbial community of high complexity consisting of 364 Metagenome Assembled Genomes (MAGs). The hydrogenotrophic pathway was the primary route for methane production during the entire experiment, confirming its efficiency even at high ammonia concentrations. Additionally, metatranscriptomic analysis uncovered a metabolic shift in the methanogens Methanothrix sp. MA6 and Methanosarcina flavescens MX5, which switched their metabolism from the acetoclastic to the CO2 reduction route during the second shock. Furthermore, multiple genes associated with mechanisms for maintaining osmotic balance in the cell were upregulated, emphasizing the critical role of osmoprotection in the rapid response to the presence of ammonia. Finally, this study offers insights into the transcriptional response of an anaerobic digestion community, specifically focusing on the mechanisms involved in recovering from ammonia-induced stress.


Assuntos
Amônia , Microbiota , Amônia/metabolismo , Amônia/farmacologia , Biocombustíveis , Reatores Biológicos , Metagenoma , Anaerobiose , Metano , Metagenômica
4.
Environ Sci Technol ; 58(1): 580-590, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38114447

RESUMO

Ammonia release from proteinaceous feedstocks represents the main inhibitor of the anaerobic digestion (AD) process, which can result in a decreased biomethane yield or even complete failure of the process. The present study focused on the adaptation of mesophilic AD communities to a stepwise increase in the concentration of ammonium chloride in synthetic medium with casein used as the carbon source. An adaptation process occurring over more than 20 months allowed batch reactors to reach up to 20 g of NH4+ N/L without collapsing in acidification nor ceasing methane production. To decipher the microbial dynamics occurring during the adaptation and determine the genes mostly exposed to selective pressure, a combination of biochemical and metagenomics analyses was performed, reconstructing the strains of key species and tracking them over time. Subsequently, the adaptive metabolic mechanisms were delineated by following the single nucleotide variants (SNVs) characterizing the strains and prioritizing the associated genes according to their function. An in-depth exploration of the archaeon Methanoculleus bourgensis vb3066 and the putative syntrophic acetate-oxidizing bacteria Acetomicrobium sp. ma133 identified positively selected SNVs on genes involved in stress adaptation. The intraspecies diversity with multiple coexisting strains in a temporal succession pattern allows us to detect the presence of an additional level of diversity within the microbial community beyond the species level.


Assuntos
Compostos de Amônio , Microbiota , Anaerobiose , Reatores Biológicos/microbiologia , Bactérias/genética , Bactérias/metabolismo , Metagenômica , Amônia/metabolismo , Compostos de Amônio/metabolismo , Metano
5.
Environ Sci Technol ; 57(43): 16399-16413, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37862709

RESUMO

It is known that the presence of sulfate decreases the methane yield in the anaerobic digestion systems. Sulfate-reducing bacteria can convert sulfate to hydrogen sulfide competing with methanogens for substrates such as H2 and acetate. The present work aims to elucidate the microbial interactions in biogas production and assess the effectiveness of electron-conductive materials in restoring methane production after exposure to high sulfate concentrations. The addition of magnetite led to a higher methane content in the biogas and a sharp decrease in the level of hydrogen sulfide, indicating its beneficial effects. Furthermore, the rate of volatile fatty acid consumption increased, especially for butyrate, propionate, and acetate. Genome-centric metagenomics was performed to explore the main microbial interactions. The interaction between methanogens and sulfate-reducing bacteria was found to be both competitive and cooperative, depending on the methanogenic class. Microbial species assigned to the Methanosarcina genus increased in relative abundance after magnetite addition together with the butyrate oxidizing syntrophic partners, in particular belonging to the Syntrophomonas genus. Additionally, Ruminococcus sp. DTU98 and other species assigned to the Chloroflexi phylum were positively correlated to the presence of sulfate-reducing bacteria, suggesting DIET-based interactions. In conclusion, this study provides new insights into the application of magnetite to enhance the anaerobic digestion performance by removing hydrogen sulfide, fostering DIET-based syntrophic microbial interactions, and unraveling the intricate interplay of competitive and cooperative interactions between methanogens and sulfate-reducing bacteria, influenced by the specific methanogenic group.


Assuntos
Euryarchaeota , Sulfeto de Hidrogênio , Óxido Ferroso-Férrico/metabolismo , Biocombustíveis , Sulfeto de Hidrogênio/metabolismo , Euryarchaeota/metabolismo , Anaerobiose , Bactérias/metabolismo , Acetatos/metabolismo , Butiratos/metabolismo , Metano , Sulfatos , Reatores Biológicos
6.
Biotechnol Adv ; 69: 108264, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37775073

RESUMO

Cupriavidus necator is a bacterium with a high phenotypic diversity and versatile metabolic capabilities. It has been extensively studied as a model hydrogen oxidizer, as well as a producer of polyhydroxyalkanoates (PHA), plastic-like biopolymers with a high potential to substitute petroleum-based materials. Thanks to its adaptability to diverse metabolic lifestyles and to the ability to accumulate large amounts of PHA, C. necator is employed in many biotechnological processes, with particular focus on PHA production from waste carbon sources. The large availability of genomic information has enabled a characterization of C. necator's metabolism, leading to the establishment of metabolic models which are used to devise and optimize culture conditions and genetic engineering approaches. In this work, the characteristics of available C. necator strains and genomes are reviewed, underlining how a thorough comprehension of the genetic variability of C. necator is lacking and it could be instrumental for wider application of this microorganism. The metabolic paradigms of C. necator and how they are connected to PHA production and accumulation are described, also recapitulating the variety of carbon substrates used for PHA accumulation, highlighting the most promising strategies to increase the yield. Finally, the review describes and critically analyzes currently available genome-scale metabolic models and reduced metabolic network applications commonly employed in the optimization of PHA production. Overall, it appears that the capacity of C. necator of performing CO2 bioconversion to PHA is still underexplored, both in biotechnological applications and in metabolic modeling. However, the accurate characterization of this organism and the efforts in using it for gas fermentation can help tackle this challenging perspective in the future.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/genética , Poli-Hidroxialcanoatos/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Fermentação , Biotecnologia , Carbono/metabolismo
7.
Bioresour Technol ; 388: 129787, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741578

RESUMO

The implementation of consolidated bioprocessing for converting starch to ethanol relies on a robust yeast that produces enough amylases for rapid starch hydrolysis. Furthermore, using low-cost substrates will assist with competitive ethanol prices and support a bioeconomy, especially in developing countries. This paper addresses both challenges with the expression of additional glucoamylase gene copies in an efficient amylolytic strain (Saccharomyces cerevisiae ER T12) derived from the industrial yeast, Ethanol Red™. Recombinant ER T12 was used as a host to increase ethanol productivity during raw starch fermentation; the ER T12.7 variant, selected from various transformants, displayed enhanced raw starch conversion and a 36% higher ethanol concentration than the parental strain after 120 h. Unripe rice, rice bran, potato waste and potato peels were evaluated as alternative starchy substrates to test ER T12.7's fermenting ability. ER T12.7 produced high ethanol yields at significantly improved ethanol productivity, key criteria for its industrial application.

8.
Curr Opin Microbiol ; 75: 102363, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37542746

RESUMO

Anaerobic and microaerophilic environments are pervasive in nature, providing essential contributions to the maintenance of human health, biogeochemical cycles and the Earth's climate. These ecological niches are characterised by low free oxygen and oxidants, or lack thereof. Under these conditions, interactions between species are essential for supporting the growth of syntrophic species and maintaining thermodynamic feasibility of anaerobic fermentation. Kinetic models provide a simplified view of complex metabolic networks, while genome-scale metabolic models and flux-balance analysis (FBA) aim to unravel these systems as a whole. The target of this review is to outline the main similarities, differences and challenges associated with kinetic and metabolic modelling, and describe state-of-the-art modelling practices for studying syntrophies in the anaerobic digestion (AD) case study.


Assuntos
Redes e Vias Metabólicas , Interações Microbianas , Humanos , Anaerobiose , Fermentação
9.
Gut Microbes ; 15(1): 2226921, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37438876

RESUMO

We report the first use of constraint-based microbial community modeling on a single individual with episodic inflammation of the gastrointestinal tract, who has a well documented set of colonic inflammatory biomarkers, as well as metagenomically-sequenced fecal time series covering seven dates over 16 months. Between the first two time steps the individual was treated with both steroids and antibiotics. Our methodology enabled us to identify numerous time-correlated microbial species and metabolites. We found that the individual's dynamical microbial ecology in the disease state led to time-varying in silico overproduction, compared to healthy controls, of more than 24 biologically important metabolites, including methane, thiamine, formaldehyde, trimethylamine N-oxide, folic acid, serotonin, histamine, and tryptamine. The microbe-metabolite contribution analysis revealed that some Dialister species changed metabolic pathways according to the inflammation phases. At the first time point, characterized by the highest levels of serum (complex reactive protein) and fecal (calprotectin) inflammation biomarkers, they produced L-serine or formate. The production of the compounds, through a cascade effect, was mediated by the interaction with pathogenic Escherichia coli strains and Desulfovibrio piger. We integrated the microbial community metabolic models of each time point with a male whole-body, organ-resolved model of human metabolism to track the metabolic consequences of dysbiosis at different body sites. The presence of D. piger in the gut microbiome influenced the sulfur metabolism with a domino effect affecting the liver. These results revealed large longitudinal variations in an individual's gut microbiome ecology and metabolite production, potentially impacting other organs in the body. Future simulations with more time points from an individual could permit us to assess how external drivers, such as diet change or medical interventions, drive microbial community dynamics.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Masculino , Inflamação , Fígado , Antibacterianos , Escherichia coli
10.
J Hazard Mater ; 458: 131950, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421863

RESUMO

The free radicals released from the advanced oxidation processes can enhance microplastics degradation, however, the existence of microbes acting synergistically in this process is still uncertain. In this study, magnetic biochar was used to initiate the advanced oxidation process in flooded soil. paddy soil was contaminated with polyethylene and polyvinyl chloride microplastics in a long-term incubation experiment, and subsequently subjected to bioremediation with biochar or magnetic biochar. After incubation, the total organic matter present in the samples containing polyvinyl chloride or polyethylene, and treated with magnetic biochar, significantly increased compared to the control. In the same samples there was an accumulation of "UVA humic" and "protein/phenol-like" substances. The integrated metagenomic investigation revealed that the relative abundance of some key genes involved in fatty acids degradation and in dehalogenation changed in different treatments. Results from genome-centric investigation suggest that a Nocardioides species can cooperate with magnetic biochar in the degradation of microplastics. In addition, a species assigned to the Rhizobium taxon was identified as a candidate in the dehalogenation and in the benzoate metabolism. Overall, our results suggest that cooperation between magnetic biochar and some microbial species involved in microplastic degradation is relevant in determining the fate of microplastics in soil.


Assuntos
Microplásticos , Solo , Plásticos , Cloreto de Polivinila , Carvão Vegetal , Fenômenos Magnéticos , Polietilenos
11.
Bioresour Technol ; 385: 129456, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37406828

RESUMO

Packing materials improve biological methanation efficiency in Trickle Bed Reactors. The present study, which lies in the field of energy production and biotechnology, entailed the evaluation of commercial pelletized activated carbon and Raschig rings as packing materials. The evaluation focused on monitoring process indicators and examining the composition of the microbial community. Activated carbon resulted in enhanced methane purity, achieving a two-fold higher methane percentage than Raschig rings, maintaining a stable pH level within a range of 7-8 and reducing gas retention time from 6 h to 90 min. Additionally, the digestate derived from biogas plant was found to be a sufficient nutrient source for the process. Fermentative species with genes for ß-oxidation, such as Amaricoccus sp. and Caloramator australicus could explain the production of hexanoic and valerate acids during reactor operation. Based on the physical properties of packing materials, the efficiency of biological methanation could be maximized.


Assuntos
Reatores Biológicos , Carvão Vegetal , Dióxido de Carbono , Biotecnologia/métodos , Biocombustíveis , Metano , Hidrogênio
12.
Bioresour Technol ; 377: 128920, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934910

RESUMO

Added-value chemicals production via food waste (FWs) valorization using open-mixed cultures is an emerging approach to replace petrochemical-based compounds. Nevertheless, the effects of operational parameters on the product spectrum remain uncertain given the wide number of co-occurring species and metabolisms. In this study, the identification of 58 metagenome-assembled genomes and their investigation assessed the effect of slight pH variations on microbial dynamics and the corresponding functions when FWs were subjected to anaerobic fermentation (AF) in 1-L continuous stirred tank reactors at 25 °C. The initial pH of 6.5 promoted a microbial community involved in acetate, butyrate and ethanol production, mediated by Bifidobacterium subtile IE007 and Eubacteriaceae IE027 as main species. A slight pH decrease to 6.1 shaped microbial functions that resulted in caproate and H2 production, increasing the relevance of Eubacteriaceae IE037 role. This study elucidated the strong pH effect on product outputs when minimal variations take place in AF.


Assuntos
Microbiota , Eliminação de Resíduos , Ácidos Graxos , Etanol , Alimentos , Metagenômica , Fermentação , Reatores Biológicos , Microbiota/genética , Concentração de Íons de Hidrogênio , Anaerobiose
13.
Bioresour Technol ; 376: 128922, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36940878

RESUMO

Three inhibitors targeting different microorganisms, both from Archaea and Bacteria domains, were evaluated for their effect on CO2 biomethanation: sodium ionophore III (ETH2120), carbon monoxide (CO), and sodium 2-bromoethanesulfonate (BES). This study examines how these compounds affect the anaerobic digestion microbiome in a biogas upgrading process. While archaea were observed in all experiments, methane was produced only when adding ETH2120 or CO, not when adding BES, suggesting archaea were in an inactivated state. Methane was produced mainly via methylotrophic methanogenesis from methylamines. Acetate was produced at all conditions, but a slight reduction on acetate production (along with an enhancement on CH4 production) was observed when applying 20 kPa of CO. Effects on CO2 biomethanation were difficult to observe since the inoculum used was from a real biogas upgrading reactor, being this a complex environmental sample. Nevertheless, it must be mentioned that all compounds had effects on the microbial community composition.


Assuntos
Biocombustíveis , Dióxido de Carbono , Biocombustíveis/microbiologia , Dióxido de Carbono/metabolismo , Prevalência , Archaea/metabolismo , Acetatos , Metano/metabolismo , Reatores Biológicos/microbiologia , Anaerobiose
14.
Cell Rep Methods ; 3(1): 100383, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36814842

RESUMO

Multi-omics data integration via mechanistic models of metabolism is a scalable and flexible framework for exploring biological hypotheses in microbial systems. However, although most microorganisms are unculturable, such multi-omics modeling is limited to isolate microbes or simple synthetic communities. Here, we developed an approach for modeling microbial activity and interactions that leverages the reconstruction of metagenome-assembled genomes and associated genome-centric metatranscriptomes. At its core, we designed a method for condition-specific metabolic modeling of microbial communities through the integration of metatranscriptomic data. Using this approach, we explored the behavior of anaerobic digestion consortia driven by hydrogen availability and human gut microbiota dysbiosis associated with Crohn's disease, identifying condition-dependent amino acid requirements in archaeal species and a reduced short-chain fatty acid exchange network associated with disease, respectively. Our approach can be applied to complex microbial communities, allowing a mechanistic contextualization of multi-omics data on a metagenome scale.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbiota/genética , Metagenoma/genética , Archaea/genética , Microbioma Gastrointestinal/genética
15.
Front Plant Sci ; 14: 1322052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304456

RESUMO

Introduction: Cyanobacteria appeared in the anoxic Archean Earth, evolving for the first time oxygenic photosynthesis and deeply changing the atmosphere by introducing oxygen. Starting possibly from UV-protected environments, characterized by low visible and far-red enriched light spectra, cyanobacteria spread everywhere on Earth thanks to their adaptation capabilities in light harvesting. In the last decade, few cyanobacteria species which can acclimate to far-red light through Far-Red Light Photoacclimation (FaRLiP) have been isolated. FaRLiP cyanobacteria were thus proposed as model organisms to study the origin of oxygenic photosynthesis as well as its possible functionality around stars with high far-red emission, the M-dwarfs. These stars are astrobiological targets, as their longevity could sustain life evolution and they demonstrated to host rocky terrestrial-like exoplanets within their Habitable Zone. Methods: We studied the acclimation responses of the FaRLiP strain Chlorogloeopsis fritschii sp. PCC6912 and the non-FaRLiP strain Synechocystis sp. PCC6803 to the combination of three simulated light spectra (M-dwarf, solar and far-red) and two atmospheric compositions (oxic, anoxic). We first checked their growth, O2 production and pigment composition, then we studied their transcriptional responses by RNA sequencing under each combination of light spectrum and atmosphere conditions. Results and discussion: PCC6803 did not show relevant differences in gene expression when comparing the responses to M-dwarf and solar-simulated lights, while far-red caused a variation in the transcriptional level of many genes. PCC6912 showed, on the contrary, different transcriptional responses to each light condition and activated the FaRLiP response under the M-dwarf simulated light. Surprisingly, the anoxic atmosphere did not impact the transcriptional profile of the 2 strains significantly. Results show that both cyanobacteria seem inherently prepared for anoxia and to harvest the photons emitted by a simulated M-dwarf star, whether they are only visible (PCC6803) or also far-red photons (PCC6912). They also show that visible photons in the simulated M-dwarf are sufficient to keep a similar metabolism with respect to solar-simulated light. Conclusion: Results prove the adaptability of the cyanobacterial metabolism and enhance the plausibility of finding oxygenic biospheres on exoplanets orbiting M-dwarf stars.

16.
Microbiome ; 10(1): 117, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35918706

RESUMO

BACKGROUND: Carbon fixation through biological methanation has emerged as a promising technology to produce renewable energy in the context of the circular economy. The anaerobic digestion microbiome is the fundamental biological system operating biogas upgrading and is paramount in power-to-gas conversion. Carbon dioxide (CO2) methanation is frequently performed by microbiota attached to solid supports generating biofilms. Despite the apparent simplicity of the microbial community involved in biogas upgrading, the dynamics behind most of the interspecies interaction remain obscure. To understand the role of the microbial species in CO2 fixation, the biofilm generated during the biogas upgrading process has been selected as a case study. The present work investigates via genome-centric metagenomics, based on a hybrid Nanopore-Illumina approach the biofilm developed on the diffusion devices of four ex situ biogas upgrading reactors. Moreover, genome-guided metabolic reconstruction and flux balance analysis were used to propose a biological role for the dominant microbes. RESULTS: The combined microbiome was composed of 59 species, with five being dominant (> 70% of total abundance); the metagenome-assembled genomes representing these species were refined to reach a high level of completeness. Genome-guided metabolic analysis appointed Firmicutes sp. GSMM966 as the main responsible for biofilm formation. Additionally, species interactions were investigated considering their co-occurrence in 134 samples, and in terms of metabolic exchanges through flux balance simulation in a simplified medium. Some of the most abundant species (e.g., Limnochordia sp. GSMM975) were widespread (~ 67% of tested experiments), while others (e.g., Methanothermobacter wolfeii GSMM957) had a scattered distribution. Genome-scale metabolic models of the microbial community were built with boundary conditions taken from the biochemical data and showed the presence of a flexible interaction network mainly based on hydrogen and carbon dioxide uptake and formate exchange. CONCLUSIONS: Our work investigated the interplay between five dominant species within the biofilm and showed their importance in a large spectrum of anaerobic biogas reactor samples. Flux balance analysis provided a deeper insight into the potential syntrophic interaction between species, especially Limnochordia sp. GSMM975 and Methanothermobacter wolfeii GSMM957. Finally, it suggested species interactions to be based on formate and amino acids exchanges. Video Abstract.


Assuntos
Biocombustíveis , Metagenoma , Anaerobiose , Reatores Biológicos , Dióxido de Carbono/análise , Firmicutes/metabolismo , Formiatos , Metano/metabolismo , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo
17.
Microbiome ; 10(1): 125, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35965344

RESUMO

BACKGROUND: The viral community has the potential to influence the structure of the microbiome and thus the yield of the anaerobic digestion process. However, the virome composition in anaerobic digestion is still under-investigated. A viral induction experiment was conducted on separate batches undergoing a series of DNA-damaging stresses, in order to coerce temperate viruses to enter the lytic cycle. RESULTS: The sequencing of the metagenome revealed a viral community almost entirely composed of tailed bacteriophages of the order Caudovirales. Following a binning procedure 1,092 viral and 120 prokaryotic genomes were reconstructed, 64 of which included an integrated prophage in their sequence. Clustering of coverage profiles revealed the presence of species, both viral and microbial, sharing similar reactions to shocks. A group of viral genomes, which increase under organic overload and decrease under basic pH, uniquely encode the yopX gene, which is involved in the induction of temperate prophages. Moreover, the in-silico functional analysis revealed an enrichment of sialidases in viral genomes. These genes are associated with tail proteins and, as such, are hypothesised to be involved in the interaction with the host. Archaea registered the most pronounced changes in relation to shocks and featured behaviours not shared with other species. Subsequently, data from 123 different samples of the global anaerobic digestion database was used to determine coverage profiles of host and viral genomes on a broader scale. CONCLUSIONS: Viruses are key components in anaerobic digestion environments, shaping the microbial guilds which drive the methanogenesis process. In turn, environmental conditions are pivotal in shaping the viral community and the rate of induction of temperate viruses. This study provides an initial insight into the complexity of the anaerobic digestion virome and its relation with the microbial community and the diverse environmental parameters. Video Abstract.


Assuntos
Microbiota , Vírus , Anaerobiose , Archaea/genética , Metagenoma/genética , Ativação Viral , Vírus/genética
18.
Bioresour Technol ; 361: 127701, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35905873

RESUMO

The current study investigated the effect of elevating gas pressure on biomethanation in trickle-bed reactors (TBRs). The increased pressure led to successful biomethanation (CH4 > 90 %) at a gas retention time (GRT) of 21 min, due to the improved transfer rates of H2 and CO2. On the contrary, the non-pressurized TBR performance was reduced at GRTs shorter than 40 min. Metagenomic analysis revealed that the microbial populations collected from the lower and middle parts of the reactor under the same GRT were more homogeneous compared with those developed in the upper layer. Comparison with previous experiments suggest that microbial stratification is mainly driven by the nutrient provision strategy. Methanobacterium species was the most dominant methanogen and it was mainly associated with the bottom and middle parts of TBRs. Overall, the increased pressure did not affect markedly the microbial composition, while the GRT was the most important parameter shaping the microbiomes.


Assuntos
Euryarchaeota , Microbiota , Biocombustíveis , Reatores Biológicos , Hidrogênio , Metano , Microbiota/genética
19.
Sci Total Environ ; 843: 157017, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35777567

RESUMO

Plastic pollution is becoming an emerging environmental issue due to inappropriate disposal at the end of the materials life cycle. When plastics are released, they undergo physical and chemical corrosion, leading to the formation of small particles, commonly referred to as microplastics. In this study, a microbial community derived from the leachate of a bioreactor containing a mixture of soil and plastic collected during a landfill mining process underwent an enrichment protocol in order to select the microbial species specifically involved in plastic degradation. The procedure was set up and tested on polyethylene, polyvinyl chloride, and polyethylene terephthalate, both in anaerobic and aerobic conditions. The evolution of the microbiome has been monitored using a combined approach based on microscopy, marker-gene amplicon sequencing, genome-centric metagenomics, degradation assays, and GC-MS analyses. This procedure permitted us to deeply investigate the metabolic pathways potentially involved in plastic degradation and to depict the route for microplastics metabolization from the enriched microbial community. Six enzymes, among the ones already identified, were found in our samples (alkane 1-monooxygenase, cutinase, feruloyl esterase, triacylglycerol lipase, medium-chain acyl-CoA dehydrogenase, and protocatechuate 4,5-dioxygenase) and new enzymes, addressed as MHETases most probably for the presence of the catalytic triad (His-Asp-Ser), were detected. Among the enzymes involved in plastics degradation, alkane 1-monooxygenase was found in high copy number (between ten and 62 copies) in the metagenomes that resulted most abundant in the microbiome enriched with polyethylene, while protocatechuate 4,5-dioxygenase was found between one and eight copies in the most abundant metagenomes of the microbial culture enriched with polyethylene terephthalate. Degradation assays, performed using both bacterial lysates and supernatants, revealed interesting results on polyethylene terephthalate degradation. Moreover, this study demonstrates to what extent different types of microplastics can affect the microbial community composition. The results obtained significantly increase the knowledge of the plastic degradation process.


Assuntos
Microplásticos , Poluentes Químicos da Água , Citocromo P-450 CYP4A , Metagenoma , Metagenômica , Plásticos/metabolismo , Polietileno , Polietilenotereftalatos
20.
Comput Struct Biotechnol J ; 20: 1481-1486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422973

RESUMO

Background: The rapid accumulation of sequencing data from metagenomic studies is enabling the generation of huge collections of microbial genomes, with new challenges for mapping their functional potential. In particular, metagenome-assembled genomes are typically incomplete and harbor partial gene sequences that can limit their annotation from traditional tools. New scalable solutions are thus needed to facilitate the evaluation of functional potential in microbial genomes. Methods: To resolve annotation gaps in microbial genomes, we developed KEMET, an open-source Python library devised for the analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) functional units. KEMET focuses on the in-depth analysis of metabolic reaction networks to identify missing orthologs through hidden Markov model profiles. Results: We evaluate the potential of KEMET for expanding functional annotations by simulating the effect of assembly issues on real gene sequences and showing that our approach can identify missing KEGG orthologs. Additionally, we show that recovered gene annotations can sensibly increase the quality of draft genome-scale metabolic models obtained from metagenome-assembled genomes, in some cases reaching the accuracy of models generated from complete genomes. Conclusions: KEMET therefore allows expanding genome annotations by targeted searches for orthologous sequences, enabling a better qualitative and quantitative assessment of metabolic capabilities in novel microbial organisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...